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A Latin square is defined as an n x n array that contains n distinct elements 
arranged such that each element appears exactly once in each row and once in each 
column. Each element will appear n times in the array. Some examples of Latin 
Squares are the following. 

!0 1
1 0$  ,    %

0 1 2
1 2 0
2 0 1

'   ,   (

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

*   ,   

⎣
⎢
⎢
⎢
⎡
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3⎦

⎥
⎥
⎥
⎤
 

__________________________________________________________________ 

Theorem 1: Let n be a positive integer. Let A be the n x n array whose entry  

aij = i + j (addition mod n), where i, j = 0, 1, 2, …, n-1), then A is a Latin square of 
order n based on Zn.  

Proof: Suppose that in some row i of the array, the elements in positions aij and aik 
are identical. That would mean that i + j = i + k.  

So, -i + i + j = -i + i + k. 

Hence, j = k. 

So, there is no repeated element in row i. 

Suppose that in some column j of the array, the elements in positions aij and akj are 
identical. That would mean that i + j = k + j. 

So, i + j – j = k + j – j. 

Hence, i = k. 

So, there is no repeated element in column j. 

Since there is no repeated element in any row or column, A is a Latin square. 

__________________________________________________________________ 

  



Additional Latin squares can be created by switching any row with another row or 
any column with another column. For example, if we have the Latin square 

   %
0 1 2
1 2 0
2 0 1

'  and switch rows 1 and 2, we get    %
1 2 0
0 1 2
2 0 1

' which is also a Latin 

square. 

__________________________________________________________________ 

We also have other techniques for creating Latin squares. 

Theorem 2: Let n be a positive integer and let r be a nonzero integer in Zn such 
that the GCD of r and n is 1. Let Lnr be the n x n array whose entry aij in row i and 
column j is aij = r x i + j (arithmetic mod n) where i, j = 0, 1, 2, … , n-1), then A is 
a Latin square based on Zn.  

Proof: Suppose that the elements in positions aij and aik are identical. That would 
mean that r x i + j = r x i + k. 

 An additive inverse for r x i exists mod n. 

So, -(r x i) + (r x i) + j = -(r x i) + (r x i) + k. 

Hence, j = k. 

So, there is no repeated element in row i. 

Suppose the elements in positions aij and akj are identical. That would mean that  

r x i + j = r x k + j. 

So, r x i + j - j = r x k + j – j 

Then, r x i = r x k. 

Since, GCD(r, n) = 1, a multiplicative inverse exist for r. 

So, r-1 x r x i = r-1 x r x k. 

Hence, i = k.   

So, there is no repeated element in column j. 

Since there is no repeated element in any row or column, A is a Latin square. 

__________________________________________________________________ 



An example of the previous theorem is shown using a 4 x 4 array and r = 3. 

 

(

0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

* 

__________________________________________________________________ 

A Graeco-Latin square is created if we take the elements from the same positions 
of two Latin squares as an ordered pair, and each ordered pair exist exactly once.  

Consider the Latin squares   %
0 1 2
1 2 0
2 0 1

'	    and   %
0 1 2
2 0 1
1 2 0

' 

 

Combining those together as ordered pairs gives us 

3
(0,0) (1,1) (2,2)
(1,2) (2,0) (0,1)
(2,1) (0,2) (1,0)

7          

Each of the 9 possible ordered pairs exist exactly once. Each first element appears 
exactly once in each row and column, and each second element exists in each row 
and column. Therefore, the array is a Graeco-Latin square. 

__________________________________________________________________ 

There is not a 2 x 2 Graeco-Latin square. This can be proven by listing all of the 
possible 2 x 2 Latin squares and showing that none of the combinations create a 
Graeco-Latin squares. 

!0 1
1 0$   and  !1 0

0 1$   are the only 2 x 2 Latin squares. If we combine those 

attempting to create a Graeco-Latin square, we get 8
(0,1) (1,0)
(1,0) (0,1)9 , and that is not 

a Graeco-Latin square, so no such square exists for 2 x 2 array.  

 

  



 

It can be shown that Graeco-Latin squares exist for 1 x1   [(0,0)]   

 

3 x 3       3
(0,0) (1,1) (2,2)
(1,2) (2,0) (0,1)
(2,1) (0,2) (1,0)

7          

 

4 x 4       (

(0,0) (1,1) (2,2) (3,3)
(1,3) (0,2) (3,1) (2,0)
(2,1) (3,0) (0,3) (1,2)
(3,2) (2,3) (1,0) (0,1)

*    

 

and  5 x 5    

⎣
⎢
⎢
⎢
⎡
(0,0) (1,1) (2,2) (3,3) (4,4)
(1,2) (2,3) (3,5) (4,1) (0,1)
(2,4) (3,0) (4,1) (0,2) (1,3)
(3,1) (4,2) (0,4) (1,4) (2,0)
(4,3) (0,4) (1,0) (2,1) (3,2)⎦

⎥
⎥
⎥
⎤

 

__________________________________________________________________ 

Euler was unable to find a 6 x 6 Graeco-Latin square and made a conjecture in 
1782 that Graeco-Latin squares do not exist for n x n squares where n ≡ 2 (mod 4). 

The 2 x 2 case was shown earlier.  

The 6 x 6 case was resolved in 1901 by Gaston Tarry. He examined all possible 
cases and showed that none of them produce a Graeco-Latin square.  

__________________________________________________________________ 

 

If two Latin squares combined create a Graeco-Latin square, we say that the Latin 
squares are mutually orthogonal. For every n, except n = 2 and n = 6, there exist at 
least two mutually orthogonal Latin squares. 

 



Recall that Lnr is a Latin square that was constructed in Theorem 2. 

Theorem 3: Let n be a prime number. Then Ln1, Ln2, … , Lnn-1 are n – 1 mutually 
orthogonal Latin squares of order n. 

Proof: Since n is prime, each nonzero integer in Zn has a multiplicative inverse. 
Using the previous theorem, the arrays Ln1, Ln2, … , Lnn-1 are Latin squares because 
GCD of n and any element equals 1. Let r and s be distinct nonzero integers in Zn. 
Then, Lnr and Lns are orthogonal. Suppose that combining the arrays together, Lnr x 
Lns has an ordered pair that occurs twice. Say that is occurs in aij and akl, then 

r x i + j = r x k + l and s x i + j = s x k + l. 

So, r x (i – k) = (l – j) and s x (i – k) = (l – j) by rearranging the previous step 
algebraically.  

Then, r x (i – k) = s x (i – k) by substitution. 

Suppose that i ≠ k, the (i – k) ≠ 0 and has a multiplicative inverse in Zn. 

If we multiply each side of the equation by that inverse, we get r = s, which is a 
contradiction. Hence, i = k and j = l. So, the only way that the two positions in Lnr 
x Lns can contain the same ordered pair is for them to be in the same position. 
Therefore, Lnr and Lns are orthogonal for all r ≠ s and Ln1, Ln2, … , Lnn-1 are 
mutually orthogonal Latin squares. 

 

Theorem 4: Let n = pk be an integer that is a power of a prime number p. Then 
there exist n – 1 mutually orthogonal Latin squares of order n.  

This can be shown for order 4 by using the arithmetic of the field a0 = 0, a1 = 1, a2 
= i, a3 = 1 + i 

 

L41 = 	(

0 1 𝑖 1 + 𝑖
1 0 1 + 𝑖 𝑖
𝑖 1 + 𝑖 0 1

1 + 𝑖 𝑖 1 0

* 

 



L4i = 	(

0 1 𝑖 1 + 𝑖
𝑖 1 + 𝑖 0 1

1 + 𝑖 𝑖 1 0
1 0 1 + 𝑖 𝑖

* 

 

L41+i = 	(

0 1 𝑖 1 + 𝑖
1 + 𝑖 𝑖 1 0
1 0 1 + 𝑖 𝑖
𝑖 1 + 𝑖 0 1

* 

L41, L4i, and L41+i are mutually orthogonal Latin squares. 

______________________________________________________________ 

Theorem 5: Let n be an odd integer. Then there exist at least two mutually 
orthogonal Latin squares of size n. 

Proof: Let n be an odd integer. Consider the addition table A and the subtraction 
table B of Zn. A and B are Latin squares. Then, aij = i + j and bij = i – j. Suppose 
that (aij, bij) = (akl, bkl). 

Then, i + j = k + l and i – j = k – l. 

Adding these equations together gives us 2i = 2k. 

Subtracting these equations together gives us 2j = 2l. 

Since n is odd, GCD(2, n) = 1, so multiplicative inverse of 2 exists, so i = k and j = 
l. So, the only way for A x B to have the same ordered pair in two positions is for 
the positions to be the same. Therefore, A and B are orthogonal.  

_________________________________________________________________ 

Mutually orthogonal Latin squares can be combined together to create a larger 
order mutually orthogonal Latin square.  



 

Theorem 6: If there is a pair of mutually orthogonal Latin squares of order m and 
a pair of mutually orthogonal Latin squares of order k, then there is a pair of 
mutually orthogonal Latin squares of order mk. 

An example of this is shown below. 

Consider A = 3
(0,0) (1,2) (2,1)
(1,1) (2,0) (0,2)
(2,2) (0,1) (1,0)

7      and     B = (

(0,0) (1,1) (2,2) (3,3)
(1,2) (0,3) (3,0) (2,1)
(2,3) (3,2) (0,1) (1,0)
(3,1) (2,0) (1,3) (0,2)

* 

 

These can be combined to create 

C = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(0,0) (1,1) (2,2) (3,3) (4,8) (5,9) (6,10) (7,11) (8,4) (9,5) (10,6) (11,7))
(1,2) (0,3) (3,0) (2,1) (5,10) (4,11) (7,8) (6,9) (9,6) (8,7) (11,4) (10,5)
(2,3) (3,2) (0,1) (1,0) (6,11) (7,10) (4,9) (5,8) (10,7) (11,6) (8,5) (9,4)
(3,1) (2,0) (1,3) (0,2) (7,9) (6,8) (5,11) (4,10) (11,5) (10,4) (9,7) (8,6)
(4,4) (5,5) (6,6) (7,7) (8,0) (9,1) (10,2) (11,3) (0,8) (1,9) (2,10) (3,11)
(5,6) (4,7) (7,4) (6,5) (9,2) (8,3) (11,0) (10,1) (1,10) (0,11) (3,8) (2,9)
(6,7) (7,6) (4,5 (5,4) (10,3) (11,2) (8,1) (9,0) (2,11) (3,10 (0,9) (1,8)
(7,5) (6,4) (5,7 (4,6) (11,1) (10,0) (9,3) (8,2) (3,9) (2,8) (1,11) (0,10)
(8,8) (9,9) (10,10 (11,11) (0,4) (1,5) (2,6) (3,7) (4,0) (5,1) (6,2) (7,3)
(9,10) (8,11) (11,8 (10,9) (1,6) (0,7) (3,4) (2,5) (5,2) (4,3) (7,0) (6,1)
(10,11) (11,10) (8,9 (9,8) (2,7) (3,6) (0,5) (1,4) (6,3) (7,2) (4,1) (5,0)
(11,9) (10,8) (9,11) (8,10) (3,5) (2,4) (1,7) (0,6) (7,1) (6,0) (5,3) (4,2) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

_________________________________________________________________ 

 

  



 

Theorem 6: Let n ≥ 2 be an integer and let n = p1e1 x p2e2 x … x pkek be the 
factorization of n into distinct prime numbers p1, p2, … , pk. Then, the number of 
mutually orthogonal Latin squares is greater than or equal to min{piei – 1: i = 1, 2, 
…, k} 

Proof: For each prime factor to a power, except 21, there exist at least 2 mutually 
orthogonal Latin squares. We have already shown that if there is a pair of mutually 
orthogonal Latin squares of order m and a pair of mutually orthogonal Latin 
squares of order k, then there is a pair of mutually orthogonal Latin squares of 
order mk. Therefore, the number of mutually orthogonal Latin squares is greater 
than or equal to min{piei – 1: i = 1, 2, …, k} 

__________________________________________________________________ 

Using all of the previous theorems and properties, we can show that Graeco-Latin 
squares exist for size n where n is either odd or a multiple of 4.  

In other words, Graeco-Latin squares exist for size n except where n ≡ 2 (mod 4). 
 

In 1959, Parker, Bose, and Shrikhande disproved Euler’s conjecture by showing 
the counterexample for a 10 x 10 array through the use of a computer. They went 
on to show that for every n, except for n = 2 and n = 6,  there exists a Graeco-Latin 
square of size n. 

 

Applications of Graeco-Latin squares include designs of experiments and 
tournament scheduling. 
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